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SUMMARY

As part of a transonic research program the sensitivity of dowmwash
at the taill plane to fairly systematic chenges in wing plsn form and
thickness has been evaluated over a Mach number range of approximately
0.6 to 1.1, utilizing the transonic-bump technique. This paper presents
a summary of information obtained from 11 transonic-bump investigations
of wing and wing-fuselsge configurations and compares the experimental
results with theoretical estimastions made for subsonic and supersonic
Mach numbers.,

Of the many varisbles investlgated, the most powerful single factor
influencing the character of downwash variation with Mach number appears
to be wing thickness ratio. If the wing thickness is such that erratic
1lift varistions are present at trensonic speeds, similar effects on down-
wash can be expected. Available methods for estimating the downwash
slope Be/BCL at high subsonic speeds or low supersonic speeds are prob-
ably sufficiently accurate for preliminary design purposes when applied
at low 1ift coefficients, particularly for wings of small thickness ratio.
With increases in sweep angle or aspect ratlio, and decreases in taper
ratio, the nonlinear downwash characterlstics occurred at lower 1ift
coefficlents and were more severe; whereas changes in thickness ratio
had 1little effect. The onset of nonlinear downwash characteristics was
delsyed to conslidersbly higher 1ift coefficients and the severity of the
nonlinearities was reduced considerably as the speed was increased from
subsonic to low supersonic.

lSupersedes recently declassified NACA Research Memorandum I52T22
by Joseph Weil, George S. Campbell, and Margaret S. Diederich, 1952,
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INTRODUCTION

Until recently, little informaetion of a systematic nature has been
avallable relatlive to the effects of wing geometry on downwash charac-
teristics at trensonic speeds. As part of a transonic research program,
however, the effects of changes in wing plan form and thickness were
investigated through a Mach number range of approximately 0.6 to 1.1 by
utilizing the transonic-bump method. The results of 11 such studies are
published in references 1 to 11.

The purpose of the present paper is to present a summary of the
Information gleaned from the various transonic-bump investigations of
wing and wing-fuselage configurations at two representative tail heights
and to compare these results with theoretical estimations made in the
subsonic and supersonic Mach number range. At subsonlc speeds, classical
horseshoe-vortex methods were used to calculate theoretical downwash
values. At supersonic Mach numbers, a recently developed line-vortex
method (ref. 12) has been employed for similar downwash calculations.

The theoretlical results so obtained have been extended beyond the extremes
of the experimental Mach number range so that downwash estimates are made

availaeble for this systematic series of wings at Mach numbers up to Va.

SYMBOLS AND ABBREVIATIONS

€ downwash angle, deg
¢! floating angle of free floating tails (corresponds to € in
refs. 1 to 11), deg
Ag! increment in floating angle from zero 1lift, deg
o angle of attack, deg
Cy, 1ift coefficient, Lift
aS
q dynamic pressure, lb/sq ft
S wing area, sq ft
M Mach number
b wing spen, ft

by tall span, ft
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cic

CrCav

c1

av

[

Subscripts:
t

av

distance between quarter chord of wing mean aserodynamic chord
and tall mean serodynamic chord, wing semispans

spanwise distance from plane of symmetry, wing semispans

tall height with respect to wing-chord plane, wing semispans

distance from tail pivot axis to tail 1ifting line; lifting
line and quarter-chord line assumed coincident at subsonic

speeds

sweep of wing quarter-chord line, deg

aspect ratio
taper ratio

meximum stresmwise-section wing thickness, ft

span load coefficient

section-lift coefficient

local chord
average wing chord, S/b

o b/2
mean serodynamic chord, g‘jp cedy
0

tall

average

effective
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EXPERIMENTAI, METHODS

Scope of Test Data

Downwash characteristics are presented in references 1 to 11 for the
wing snd wing-fuselage configurstions shown on table I. It is evident
that the configurations investigated were sufficlently systematic to
afford limited studies of the effects of sweepback, uspect ratio, taper
ratio, and airfoil thickness. Data were obtailned for five tail heights
corresponding to a tall-height range of asbout 40 percent semispan rela-
tive to the wing-chord plane extended. For reasons dictated by the test
setup, the distance between the model pivot and location of the floating
tails was maintained constant; therefore, inasmuch as wing area also
remained constant, the ratio of tail length to wing semispan was a func-
tion of the aspect ratio. (See table I.) An angle-of-attack range of
from about -2° to 10° was covered over a Mach number range of about 0.6
to 1.1.

Because of the large bulk of downwash information obtained in the
experimental Investigations reported in references 1 to 11, a complete
analysis at all tail heights was deemed impractical. The analysis
included in the present paper, therefore, has been limited to tail heights
on the chord plane extended and 30 percent of the wing semispan above the
chord plane extended.

Test Technique

The experimental investigations were conducted in the Langley high-
speed T- by 1lO0-foot tunnel by utilizing an adaptation of the NACA wing-
flow technique for obtaining transonic speeds., The method used involves
mounting a semispan model in the high-velocity flow field generated over
the curved surface of a bump located on the tunnel floor. A more come-
plete description of the transonicebump test technique 1s presented in
reference 13.

Effective downwash angles were determined by measuring the floating
angles of a number of sweptback free-floating tails (wing 4 plan form of
table I) located behind the various models. Typical test setups are
shown in figure 1. Data were obtained for the five tail locations
shown in two series of runs. (See fig. 1(a).) It was found from s
preliminasry investigation that the 2 inch tail spacing obtained in this
menner enabled design information to be acquired with negligible inter-
ference between floating taeils at transonic speeds. For studies of the
downwash characteristics of the wing-fuselage configurations the cen-
trally located tail was replaced by a geometrically similar tail mounted
on the fuselage; therefore, a 0.4t inch more outboard spanwise reglon was



NACA TN 3628 5

surveyed by the tail. (See fig. 1(b).) Further details of the test
technique may be found in references 1 to 11.

No quentitative informstion is available as to the effect on wing-
span-load distribution of factors that stem directly from the bump
technique such as flow curvature, Mach number gradients, and_low test
Reynolds number (generally of the order of 6 X 107 to 8 X 105). As later
concluded from the theoretical analysis, effects on span loading exert
a much greater influence on downwash for taill locations on the chord
plane extended than for considerably higher tail positions.

It should bhe pointed out that the tail floating angles obtained were
a measure of the angle of zero pitching moment about the swept-tail pivot
exis rather than the angle of zero 1ift (true effective downwash angle).
The discrepancy between downwash and floating angles, however, caused by
the presence of spanwise and chordwise downwash grsdients was estimated
to be generally less than 10 percent of the downwash angle for talls
located on the chord plene extended and essentially zero for the high
tail posltion analyzed.

THEORETICAL METHODS

Subsonic Method

Subsonic values of point downwash were calculated by summing the
downwash contributions of 21 horseshoe vortices located aslong the wing
quarter-chord line and having strengths determined by the theoretical
span-load distribution. The analytical expression for the downwash
induced by a single horseshoe vortex is given on page 197 of Glauert's
text (ref. 14). Numerical values for the downwash in the z = O plene
of a rectangular vortex were obtained from the tables of reference 15;
similar values were calculated for the =z = 0.3 plane. Since the time
of these calculations, downwash in the field of a single horseshoe vortex
has been presented for several tail heights in reference 16.

Two methods were used to calculate the wing-span-loed distributions
which determined the strength of the individual vortices. The most
readily available wing loadings are those obtained from Weissinger's
method and are given in the charts of reference 17. However, compari-
sons of Weissinger's T-point solutions with lifting-surface theory and
with experiment (refs. 18 and 19) indicate unsatisfactory prediction of
loading shape for wings having a combination of moderately high sweep
and aspect ratio. Somewhat more reliable loading shapes may be calcu-
lated as in reference 18 without undue laber. Wing loadings obtained
from references 17 and 18 and the downwash from such loadings are com-
pared in the present paper.
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Results of calculations for several of the plan forms considered
in this paper Indicated that Mach number variations in the subsonic
range had a negligible effect on the shapes of the span-loading curves.
It therefore was considered Jjustifiable to account for Mach number effects
on BE/BCL by using the incompressible span loadings in conjunction with

an increase in tail length by the ratio L . Such & procedure

1 - M2
results from application of the three-dimensional Prandtl-Glauert trans-
formation. (See ref. 20.)

Bupersonic Method

The theoretical supersonic downwash in this paper was calculated
using equations (41) and (L6) of reference 12 for the downwash in the
field of swept and unswept supersonic line vortices. Calculations made
for representative plan forms and tail locations indicated that a con-
siderable saving in labor could be effected by replacement of the integral
terms in these equations with equivalent finite summations. At the same
time, accuracy was not perceptibly impaired when the span loading was
broken up into 20 steps across the span. Hence, the theoretical super-
sonic downwash presented in this paper was calculated by using such a
finite summation. The sweep and chordwise location of the line vortex
was chosen to approximste those of the curved line of local centers of

presgsure.

The supersonic loadings presented in this paper and used 1n the
downwash calculations are subject to the usual limitations of small
perturbation theory. In the case of wings having supersonic leading
and trailing edges, the span loading was calculated by evaluating the
potential at the trailing edge, the expression for velocity potential
being given in reference 21. Design charts are now available in refer-
ence 22 for the span loading of such wings. Cohen's method (refs. 23
to 25) was used to calculate the loading of wings having subsonic edges.
For the Intermediate case of subsonic leading edge and supersonic
trailing edge, the expressions of reference 26 for local pressure were
integrated analytically to provide spanwise loading.

Application

The theoretical downwash presented is directly applicable to iso-
lated wing conflgurations. The effects of wing-body interference have
not been considered. The principal effect of this interference on wing
span loading probably is experienced inboerd near the Juncture and, as
will be shown later, is apt to produce the largest effect on the down-
wash characteristics of talls located on the wake center line.
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For most of the calculations the vortex sheet was assumed to be
flat with displacement and rolling-up of the trailing vortex neglected.
This assumption is believed Jjustified in the low-1ift range, particularly
in view of the fact that the configurations studied were close-coupled
and generally of moderate gspect ratio.

As will be shown later, in certain instances 1t was found desirable
to estimate the downwash on the assumption that the entire semispan
trailing vorticity could be concentrated in a single trailing vortex.
For the low-lift range In which the estimations were applied, vortex
displacement was neglected. The method used for these estimgtions may
be found in reference 27.

As mentioned 1n a previous section, the experimental measurements
did not represent true effective downwash angles, but rather a measure
of the angle of zero pitching moment of the floating tail about its pivot
axis. In order to compare theory with experiment it therefore was neces-
sary to compute the tail floating angles for the swept tail used (wing 4
plan form). This computation was made by use of the following downwash-
weighting relationship

de! 1 i€ y
BC_L T lav KECLZ<CLCaV>d(bt/2) (1)

for the assumed 45° swept tail can be found in figures 4

CcsC

where
CLcav

and 13.

The theoretical point downwash has been used not only to obtain the
floating angles for correlation with experiment but also to obtain the
theoretical effects of wing geometry on the downwash characteristics
through a Mach number range consliderably beyond the experimental range.
For the latter computations a measure of the angle of zero 1ift of the
floating tall (effective downwash) was computed by the following relation

(S—S-L)e - fol S () n) (2)
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PRESENTATION OF RESULTS

A summary of figures presenting the results of the subJject inves-
tigation 1s as follows:

Figures

Theoretical span-load distributions and spanwise downwash
gradients . . i i v h 6 bt e b e e e s e e s e e e e e e . 2%t0 19

Theoretical varlistion of weighted downwash slope with Mach
nlmbe r L] - L ] - . - L] L] . L] L . - . . L ] . L] . . L] . Ll - [ ] L ] 20 to 3 l

Basic experimental data . . . « 4 + ¢ . ¢+ + s s . s . o « o 32 to k2

Experimental and estimated sweep effects:
Variations with Mach number . . . « ¢« « « « « « & o o « « « 43 to 47T
Variations with 1ift coefficient . . « ¢« + « « « « « « + . . 48 t0o 51

Experimental and estimated aspect-ratio effects:
A/ =35 « o v v v oo il e s i s s s s . 52 %0 5
A/ =B5° o oo L o s e 55 10 5T

Ac/h =600 & i i s e e e e et e e e s e e e e e .B581060

Experimental snd estimated taper ratio effects:
B/l =35 o v e s s e e e e e .. 6L %0 63

Ay =80 o .. 6hto 66

Experimental and estimated effects of thickness ratio:
Ag/y = 00 L i i ittt e e e e e e e e e e e e e . 6Tand6d

A/ =4° oo oo v i i oo oo 69and O
Summary of correlation between estimated and experimental results:

L
T £~

ANALYSIS AND DISCUSSION

Theoretical Downwash

Subsonic.- The comparison of the span-load distributions obtained
from the charts of reference 17 and the methods of reference 18 is fairly
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good except for the wings of the highest sweep angles and aspect ratios
(wings 5 and T). (See figs. 5 and 7.) Decreasing wimg taper ratio,

sweep angle, or aspect ratio is shown to produce a more favorable com-
parison between the two methods. It is interesting to note that, whereas
differences in span-load gradient attributable to the method of calculation
represent sizeable differences in estimated downwash angle per unit 1ift
for tails located on the wing-chord plane extended, very little sensi-
tivity to the exact shape of the span-loading curve is indicated when

the tail surface 1s located 30 percent of the wing semispan above the

chord plane extended.

In view of the fact that the methods of reference 17 are apt to
produce somewhat erromeous results for certain of the wings considered,
all subsonlc downwash estimations presented and discussed ih the remainder
of this paper utilize span loadings calculated by the methods of refer-~
ence 18. The values of lift-curve slope and the lateral center of pres-
sure for the Incompressible finlte-step loadings are presented in table II.

An Inspection of figures 2 to 10 indicates in many instances a rather
large spanwise gradient of Be[aCL with & minimum velue occurring st the

plane of symmetry. For the higher taill position investigated (z = 0.3),
the gradients in BG/BCL are generally negligible.

Increasing the tail length to infinity generally reduced the down-
wash angles by about 10 to 15 percent. This magnitude also represents
the maximum first-order effects of compressibility on the subsonic down-
wash angles, since the downwash angles In compressible flow can be
obtained by calculaeting the incompressible downwash with the tail length

1

Vi - 2

Supersonic.~ The span~load distributions for the series of wings
Investigated showed appreciable effects of Mach number at supersonic
speeds, which is in marked contrast to the negligible changes in wing
loading found at subsonic speeds. (See figs. 11 to 19.) As may be seen
from the span-loading shapes or from the values of lateral center of
pressure, increasing Mach number at supersonic speeds shifted the cen-
ter of load progressively ocuthoard in 211 instances with the exception
of the delta wing (fig. 18) for which no change in loading shape is
imdicated.

increased by

Spanwise downwash gradients in the chord plane extended were gen-
erally much greater at supersonic speeds than at subsonic speeds. Inas-
much as reletively small differences are shown between the downwash char-
acteristics for finite and infinite tail lengths, it is evident that the
large spanwise gradients are primasrily attributable to the shape of the
load-grading curve rather than caused by fundamental differences in the
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nature of the subsonic and supersonic calculations. Raeising the tail
0.3 semispan above the chord plane greatly reduced the spanwise downwash
gradients and generally reduced the effect of Mach number on ae/aCL.

Variations with Mach number.- The theoretical point values of BG/BCL

presented in figures 2 to 19 were weighted by use of equation (2) to

obtaln estimated (Be/CL)e veriations with Mach number for the nine plan

forms investigated and for the tall configurations shown in table I. The
varietion of (ae/am)e with Mach number was calculated by a similar

welghting process.  Estimatlons are presented for tail heights of O

and 0.5 semispan sbove the wing-chord plane extended at finite and infi-
nite tail lengths. (See figs. 20 to 31.) Although it is realized that
the "Trefftz plane" results are physically inaccuraste because of wake-
distortion effects, the infinite-tail~length estimetions were incluvded
because they give at least a falr evalustion of the differences between
rather short coupled configurations and those having large tail lengths.
« An arbitrary dashed-line fairing has been used in the Mach number range
from M = 0.8 to 1.1 +to connect the subsonic and supersonic values of

(Be/CL)e and (de/da),.

An inspection of the various curves (figs. 20 to 31) shows several
interesting differences between the subsonic and supersonic downwash
characteristics, The downwash slopes are a maximum in the chord plene
extended at subsonic speeds but this is not always true at supersonic
speeds. Increase in tail length reduced (BG/BCL)e and (Be/Bm)e at

subsonlc speeds but the reverse condition was generally indicated at
supersonic speeds.

From the data 1t would appear that the smallest change in downwash

parameter (BG/BCL)e with Mach number at low Cj, might be expected for

& high tail at relatively large tail length. In the sweep series, Mach
number effects were smallest for the 60° configuration (fig. 21). At
all speeds the wings having lowest aspect ratio and taper ratio had the
largest computed downwash slopes.

Experimental Downwash

Effect of sweep angle.- The basic data of figures 32 to 42 have
been used to determine the variation of Beﬂ/aCL with Mach mumber in the

low-1ift range. For the wing-alone'condition, the unswept wing gener-
ally produced the highest velue of an/BCL and also demonstreted the

most erratic chenges in Je'/dCr, above M = 0.85. (See fig. 43.) It
should be pointed out that the unswept-wing date (ref. 1) showed similar
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irregularities in the lateral center of pressure. This result indicates
that sizeable changes occur in the span load distribution of the unswept
wing at transonic speeds which are directly reflected in ae'/aCL. The

sweptback wings showed rather small variastions of ae'/aCL with M par-
ticularly at 2z = 0.3.

The addition of the fuselage had the largest effect on the wings of
greatest sweep. For the tail located on the chord plane extended, it
should be remembered that the increases in Je'/dC; shown for the 45° and

60° wings are at least partially caused by the more outboard spanﬁise
location of the floating tail in conjunction with large spanwise down-
wesh gradients indicated by theory. (See fig. h3.)

Comparisons sf the experimental and estimated floating-angle param-
eter Be'/BCL for the sweep series as a function of Mach number are
shown in figures 44 to 47. A smooth arbitrary fairing was used in the
Mach number range between lift-force break and the lowest point for
which supersonic estimations were made. In contradiction with what
might be anticipated, the floating angles for the wing-fuselage conflgu-
rations agree better with estimations for the low taill position at sub~
sonic speeds than do the corresponding wing-alone configurations. For
2z = 0 the estimated floating-angle slope is generally considersbly
higher then the experimental results. (See figs. 44 and 45.) The over-
all agreement between experimental and estimasted results is seen to be
considerably better for z = 0.3 (figs. 46 and 4T), however, perhaps
because Oe€'/dC;, 1s more dependent upon the total 1ift at the higher
tall position and less influenced by small deviations in the span
losding. (See figs. 44 and U46.)

The variations of flosting-engle increments with 1ift coefflcient
are presented in figures 48 to 51 for Mach numbers of 0.8 and 1.1. Only
limited conclusions regarding the downwash characteristics at higher 1lift
coefficients can be drawn from these data because of the restricted angle
range obtained in the original Investigations. It is apparent, however,
that the extent of the linear range of Ae' against C1, decreases with
increasing wing sweep. The 1ift coefficient at which the lateral center
of pressure departe from linearity (refs. 1 to 11) has been indicated
in the figures by a small vertiecal tick. It is evident that the onset
of nonlinearity in varietion of Ae' with Cy 1is directly related to

the 11ft coefficient at which chenges in span loading are known to occur.
For the swept wings, the center of pressure moves inboard at the higher
1ift coefficients and s corresponding increase in Be'/aCL is indicated;

for the unswept wing the reverse is true. At M = 1.1, changes in span
loading are delayed to a higher 1lift coefficient than at M = 0.8 and
this effect is reflected in the extension of linear €',
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In view of the preceding discussion, 1t is apparent that corre-
lation between experimental and predicted results can be defined by the
slopes shown in figures 4 to 47 up to the 1ift coefficients indicated

by the ticks in figures 48 to 51.

Effect of aspect ratio.- The effects of aspect ratio on 3e'/dC

are présented in figures 52 to 60. Increasing wing aspect ratio almost
elways reduced the floating-angle slope and produced a somewhat smaller
variation of Je'/dCp, with Mach number. A sizeable but rather incon-

sistent fuselage effect is also shown. (See figs. 52, 55, and 58.)

The most significant effect of aspect ratio on the floating-angle
characteristics at the higher 1ift coefficlients is indicated for the
45° swept plan form which shows a large increase in ae'/aCL above

C1, ® 0.4 for the wing of aspect ratio 6 at subsonic speeds. Although
the limited 11ift range precludes a definite conclusion, it is apparent
that the linearity of the curve of A¢' against C1, is malntgined to

a somewhat higher (1, for the wing with an aspect ratio of 4, The fore-
going trends, which may be affected by the low scale of the test, are
directly treaceaeble to earlier occurrence of flow changes on the higher-
agpect-ratio wing and were reflected by movements of the spanwlse center
of pressure. (See vertical ticks, fig. 56.)

In general, the effects of aspect ratio as determined experimentally
were either alweys less than or approximately equal to the estimated
increments, The largest discrepancies between the estimated and experi-
mental results were evident for the wing with an aspect ratio of 2 and
Ac/h = 60° (fig. 58). For this wing the chord-plene-extended slopes

were much smaller than those estimated by assuming no distortion of the
vortex sheet. This latter effect becomes more critical as the aspect
ratio is reduced and msy be responsible in part for the very poor
agreement. '

Effects of taper ratio.- For the two wings having approximately
35° sweep the effects of changing wing taper ratio were considerably less
then estimated for z = 0 at subsonic speeds. At low supersonic speeds,
however, the agreement between experiment and estimation was qulte good.
(See fig. 61.) Mach number effects were not materislly greater for
wings of eilther taper ratioc.

For the triangular wing, changes in wing span loading, as indicated
by the vertical ticks on figure 62, occurred at considerably lower lift
coefficients than for the wing of A = 0.6 and this effect was generally
reflected in the earlier occurrence of unstable trends in the higher 1lift
downwash charaecteristics. The addition of the fuselage to the triangular
wing produced more unstable downwash characteristics in the higher 1ift

range throughout the speed range.



NACA TN 3628 15

Decreasing the taper ratio from 0.6 to 0.3 on the 45° swept plan
form delayed and reduced the pronounced decrease in Beﬁ/BCL for the wing

fuselage condition (z = O) at transonic speeds. (See fig. 64.) The
agreement between experiment and estimations is seen to be rather poor

for the low-tail position. For the tail in the raised position, the
experimental results indicate a rather ragged variation witnh M, but the
absolute values agree fairly well with estimations. The data are insuf-
ficient to explain the cause of the sharp hump in the variation of -BGD/BCL

between M = 1,05 and 1.1 for A =0.3, z = 0.30.

Effects of wing thickness.- The effects of reducing the thickness
of the unswept wing from 6 to 4 percent and of the 45° swept wing of
aspect ratio 6 from 9 to 6 percent are presented in figures 67 to TO.

It is evident that, for both plan forms, reducing the wing thickness
produced better agreement between the estimated and experimentel results
at transonic speeds.

The largest effects of thickness were present for the swept wing
where, for the 9-percent-thick configuration, loss in tip loading in the
low-lift range near M = 1.0 (ref. 8) caused s large increase in aey/bCL.
For general application, a rough idea of the combination of thickness
ratio, aspect ratio, and sweep for which erratic downwash varistlions might
be expected in the low-1ift range at transonic speeds can be obtained from
references 28 and 29. The increase in Je¢'/dCy, for the swept wing in the

higher 1ift range at subsonic speeds was little affected by thickness
changes.

Summary of correlation between experimental and estimated results.-
The values of J¢[dC], at M = 0.8 estimated by the assumption of a flat

vortex sheet were almost always considerably higher than values obtalined
from the experimental wing-alone date. (See fig. Tl.) Surprisingly
enocugh, the addition of the fuselage sactually resulted in somewhat better
correlation. In the higher tsil location considerably better agreement
was obtained with most points falling within the lines indicating

120 percent departure from the line of perfect agreement. With the
possible exception of wing 9, it might be expected that the assumption
of a flat vortex sheet should be valid at low Cp,. Nevertheless, lnas-

much as the correlation for the chord plane extended results was con-
sidered rather poor, it -was decided to calculate the downwash on the
improbable assumption that the trailing vorticity was completely rolled
up into two discrete vortices., The correlation obtained by use of this
method is shown by the flagged symbols of figure Tl. It is seen that
the agreement using a single horseshoe vortex is much improved for the
low tail position. The correlation for z = 0.30 1is essentially the.
same for either method and is considered acceptable for preliminary
design estimates. :
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A correlation between experimental -ae'[BCL at M= 1,1 and values

calculated on the basis of line-vortex theory (assuming a flat sheet)
is presented in figure T72. As was shown in the subsonic correlation,
the degree to which Be'/BCL can be predicted 1s considersbly better for

Z = 0.30 than for tails located on the wake center line. The presence
of the fuselage did not materially sffect the correlation. As previously
pointed out, increasing the thickness ratio from 6 percent (wing 7T) to

9 percent (wing 8) results in large span load changes which produce a
detrimental effect on the correlation.

The replacement of the wing by a single horseshoe vortex, which was
shown to work so well at M = 0.8 was also tried at M = 1.1. The
general correlation at M = 1.1, however, was materially worse when the
rolled-up vortex assumption was used, and it is not suggested that this
approach be used.in most instances even for preliminary estimates. It
might be added, however, that the experimental data for wing 9 (A = 2,
Ac/h = 60°), which were in very poor agreement with the linear theory
result at z = 0, were brought into almost perfect agreement with the
velue estimated on the assumption of a rolled-up vortex; this result indi-
cates that the assumption of a rolled-up vortex might still offer the
best approach at low supersonic speeds for wings of very low aspect retio.

CONCLUDING REMARKS

A study of the effects of plan form and thickness on the estimsted
end experimentally determined transonic downwash characteristics of
various wing end wing fuselage configurations indicated a number of points
of special interest which are summarized in the following paragraphs.

The thin wings investigated in the present paper generally showed
rather smooth transonic downwash characteristics with no important con-
sistent effects of sweep angle, aspect ratio, taper ratio, or taill height
on the variation of the rate of change of downwash slope Je¢/dCI with
Mach number in the low 1ift range. Although data pertsaining to thick-
ness effects were meager, indications were that the use of wings having
thickness large enough to produce erratic variations of 1lift slope at
transonic speeds very likely will produce similar erratic variations on
downwash characteristics. The addition of the fuselage to the isolated
wing affected the absolute magnitude of downwash slope more than it
affected the variation of the downwash slope with Mach number.

At subsonic speeds, a somewhat better correlstion between estimated
and experimental downwash slope BG/BCL was obtained for tails located

on the chord plane extended by the physically improbable assumption of a
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completely rolled-up vortex sheet instead of a flat vortex sheet. For
a tail position considerebly above the wake center line, assumption of
either a flat or rolled-up vortex sheet geve an acceptable correlation
with experiment. At low supersonic speeds use of line-vortex theory
with a flat vortex sheet produced results that were in fair agreement
with experiment.

Any conclusions drawn concerning the downwash characteristics at
higher 1ift coefficients are somewhat restricted because of the limited
angle-of -attack range of most of the test data. It was found, however,
that the lateral center-of-pressure data obtained in the investigations
of the various wings could be used to determine the 1lift coefficient at
which nonlinearities in downwash might be expected at all Mach numbers,
Increase in sweep angle and aspect ratio and decrease in taper ratio pro-
duced earlier and more pronounced increases in downwash slope at higher
1ift coefficients, whereas thickness change had little effect. The onset
of nonlinear downwash characteristics was delayed to considerably higher
1ift coefficlents and the severity of the nonlinearities reduced con-
siderably as the speed was increased from subsonic to low supersonic.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronsautics,
Langley Field, Va., September 19, 1952.
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Table I
Mode! Geometry

Wing

No. 4 % NA CA X b
7?% (deg) Section —b—':
/ ﬂ 0 654006
- L2 | 38
o | —===akt 654004
3| /_ﬁ Y 35 654006 | 12 | .38
4 ) 45 654006 | 12 | 38
5 % 60 654006 | 12 | 38
S
Y,
6 _/ 2__ o | 35 654006 | 10 | .3/
7 654006
- 45 0 | .37
8 | —=f=—= 654009
91 % 60 654006 | 1.7 |.53
/0 ) 369 654006 | 12 | .38
7 ﬁ | s 654006 | 12 | .38




TABLE II
STMMARY OF THEORETICAL LIFT-CURVE SLOPES-

AND LATERAL CENTERS OF PRESSUREL

0.0681 0.1097 0.1013 0.089% lo_ 0765 5.1 48.8 50.1 50,4 50.0
7.8 0.0608 0.083L | 0.08L5 0.,085% | 0.080% 46.7 48.3 k9.7 51.5 51,8

10 0.0588 0.0991 0.0859 0.07T75 | 0.0658 ho.ly ha.ly Lha.y ha.k L2,
11 0.0572 | 0.0825 | 0.0793 0.0738 |0.0686 hi;.5 k6.5 7.6 1.8 iB.1
- ¥ 0 1.13 1,25 V2 0 1.13 1.25 vz
Wing
0.0606 0.09%0 0.0819 0.0683 5.3 k7.2 L8.o L8.7
lyalues shown for zero Mach number caleulated by method of reference 18. -:52
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(a) Wing alone. (b) Wing fuselage.
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Figure 2.- Theoretical span load dlstribution and spanwise downwash characteristics at
subsonic speeds., Wings 1 and 2; Ac/h =0% A=4; A =0.6.
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Figure 1l.- Theoretlcal span loed distribution and spanwise downwash characteristics at
supersonic speeds. Wings 1 end 2; Ao py = 0% A =4; A =0.6.
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Figure 12.- Theoretical span load distribution and spanwise downwash characteristics at
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Figure 1%.- Theoretical span load distribution end spanwise downwash characteristice at
supersonic speeds. Wing b; Ac/h = 45Y; A = 4; A = 0.0.
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Figure 14%.- Theoretical span load distribution and spanwise downwash characteristics at
supersonic speeds. Wing 5; A_p, = 605 A = k; A = 0.6,
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Figure 15.- Theoretical span load distribution and spanwise downwash cheracteristics at
supersoplc speeds. Wing 6; A, = 35%; A =6; A = 0.
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Figure 16.- Theoretical span load distribution and spanwise downwesh cheracteristics at
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Figure 17.- Theoreticel span load distribution and spanwise downwash characteristics at
supersonic speeds. Wing 9; A ofs = 60°; A = 2; A = 0.6.
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Figure 18.~ Theoretical span load distribution and spanwise downwash characteristics at
superscnic speeds. Wing 10; A 4 = 36.9%; A = k4; A= 0.
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Pigure 21.- Effect of sweep angle on veriation of downwash parameter (Be/aq.)e with Mach
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Figure 22.- Effect of aspect ratlo on variation of downwash parsmeter (ae /BCL) with Mach

mmber. A = 3% A = 0.6.
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Figure 24,- Effect of mspect ratio on variation of downwash parameter (BE/BCL)
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Figure 52.- Effect of aspect ratio on the experimental and estimated verias
tion of flosting-sngle perameter de'/OCL with Mach mumber. A, = 353

A= 0.6; % = 0.06.
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Figure 53.- Effect of aspect ratio on the experimental and estimated varia-

tion of floating angle with 1ift coefficlent,

g- = 0.06; M = 0.8.

Agfy = 35% A = 0.6;
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Figure 54.- Effect of aspect ratio on the experimental and estimated varia-~
tlon of floating angle with 1lift coefficlemt. A, M= 359; A = 0.6;

L=0.06; M =1.1.
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Figure 55.- Effect of aspect ratio on the experimental end estimated varia-
tion of floating-angle parsmeter de' /BCL with Mach number. A, fu = 150,

A =06 & = 0N NA.
iy \l-v’ c L Ly

G29¢ NI VOVN




4:4
!/d
o
V/)
/‘/ﬁ/
0 O
L "
]
-~ -F‘/
U ol
/
4 ==
Ae’ 0 1/%
—
rf‘
-4
4 0 2 4 & 8
CL

Figure 56.- Effect of aspect ratio on the experimentel and estimpted varia-

Experimental

tion of flosting angle with 1ift coefficlemt. A p = h5%; A = 0.6;

% = 0-06; M = 0-8-
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Tigure 5T7.- Effect of aspect ratio on the experimentsl and estimated varia-
tlon of flosting engle with lift coefficient. Ag/y = 450, A = 0.6;

L =0.06; M=1.1.
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Figure 56.-~ Effect of aspect ratio on the experimental and estimated varia-
tion of floating-angle parameter Je'/dC;, with Mach number. Agfy = 60°;
R = 0-6; % = 0-%-
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Figure 59.- Effect of espect ratio on the experimental and estimated varia-

tion of floating angle with 1ift coefficlent. A, = 60% A = 0.6;

L = 0.06; M = 0.8,
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Figure 60.- Effect of aspect ratic on the experimenmtel and estimated varia-
tion of floating angle with 1ift coefficient. A, = 60%; A = 0.6;
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Figure 61.- Effect of taper ratio on the experimental and estimated varia-
tlon of floating-angle parameter Je'/dCy with Mach mumber. Aoy ™ 35°;

A=1|-;:;--=(5'.06.
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Figure 62.- Effect of taper ratio on the experimental end estimsted varia-

tion of floating angle with 1ift coefficient. A 4 = 350: A = k. L = 0,05
¥ = 0.8 T Fefy T2 A =0 g o= 0.05
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Figure 63.- Effect of taper retio on the experimentel and estimated varia-
tion of floating angle with 1ift coefficlent. A,/ = 35% A = 4; L = 0.06;
M = llll
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Figure 65.- Effect of taper ratlo on the experimental and estimated varia-
tion of flosting angle with lift coefficiemt. A,gy = 45% A = k; ¥ = 0.06;
M = 0.8.
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Figure 67.~ Effect of wing thickness ratio on the experimental and estimated
variation of floating-angle parameter Be'/ oCy, with Mach mmber. A, /i = 05
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Figure 68,- Effect of wing thickness ratlo on the experimental snd estlimated
variation of floating angle with 1ift coefficient. Aclll- =0% A =Lk;
‘A = 0.6.
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Figure T0.- Effect of wing thickness ratio on the experimental and estimated

variation of floating angle with 1ift coefficlent.
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Figure T2.- Summary of correlation between experimental and estimated
parameter BE'/BCL using flat-vortex-sheet theory. M = 1.1.
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